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Abstract. We present simulations of the dynamic critical state for a 2D superconductor with strong pinning
centers, corresponding to a matching field twice the applied magnetic field. The sharp crossover between
the plastic regime, at low current density and temperature, and the fluid flow regime for flux motion is
characterized by the activation energy for flux motion and the transverse diffusion of the vortices trajectory.

PACS. 64.60.Ht Dynamic critical phenomena – 74.60.Ge Flux pinning, flux creep, and flux-line lattice
dynamics

1 Introduction

Flux pinning in type II superconductors is a well doc-
umented example for the general problem of an elastic
periodic medium interacting with disorder. The study of
the dynamics of the pinned flux line lattice, under the
action of an external current or by the virtue of a time
varying external magnetic field, is one way to apprehend
the problem of flux line pinning. Well known examples
are transport I-V characteristics and magnetization re-
laxation experiments. Such experiments are usually inter-
preted using simple models, assuming a uniform critical
current density and a single, current dependent, activa-
tion energy at non zero temperature. However, numerical
simulations [1–4], experiments [5,6] and theory [7,8], have
shown that a driven flux lattice can be a rather complex
object, remarkably different from the simple pictures used
in the interpretation of the experiments. In particular, the
pinning of a two-dimensional flux lattice by strong pinning
centers lends itself easily to numerical simulations and has
been the subject of several studies. Such a system is also
a good approximation for highly anisotropic superconduc-
tors irradiated by heavy ions, such as the high Tc oxides,
which are now well documented. In this paper, we present
numerical simulations of this strong pinning situation, at
non zero temperature and for conditions similar to those
encountered in experimental magnetization experiments.

2 Simulation

We simulate a slab submitted on one side to an external
magnetic field, applied parallel to its boundary, while, on
the opposite side, the external magnetic field is assumed to
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Fig. 1. Geometry used for the simulations. The average vortex
flow is along the x direction. Dotted line depicts the periodic
boundary condition.

be zero (vortices are removed as they cross this boundary).
Periodic conditions are used, so that the effect of the finite
dimensions is limited. Flux lines are assumed rigid rods.
This correctly modelizes a layered superconductor with
decoupled layers in the critical state, for which the local
magnetic induction decreases from the applied field value
on the external sides to a lower value at the center of the
sample (Fig. 1).

Strong pinning centers are randomly distributed in the
sample. The density of the pinning sites is n = BΦ/Φ0,
with Φ0 the flux quantum and BΦ the ‘matching field’ for
which an equilibrium flux line lattice shows the same den-
sity of flux lines. A region of width λ from the side where
vortices are introduced is kept free of pinning sites, in or-
der to allow for the initial formation of a regular hexagonal
lattice in this region. The pinning sites are assumed nor-
mal cylinders parallel to the applied field, with radius c0.
The situation where, at low temperature, the vortex core
radius ξ(T ) is smaller than c0 and pinning is due essen-
tially to the reduction of the core energy when the line
sits on the pin is considered. The force exerted by a pin
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at a distance r to the line is given by:

fp(r) =
{
σε0r/r0ξ for r ≤ r0 ,
0 for r > r0 ,

(1)

where ε0 = (Φ0/4πλ)2 is the line energy, r0 = c0 + ξ/2
and σ ≤ 1.

The force per unit length exerted by a vortex at a
distance r to the line is:

fvv(r) =
(
Φ2

0/8π
2λ3
)
K1 (r/λ) (2)

where K1 is a Bessel function. This is a good approxima-
tion strictly only in the case of vortex lines (rods) and
for 2D vortices a logarithmic interaction should be used.
In the present case, the more rapid decrease of the Bessel
function allows us to cut the interaction between vortices
at a distance 5λ and save computation time.

The external magnetic field B0 is simulated by an ex-
tra force fB0 acting on each vortex, perpendicular to the
external side of the sample. The force acting on a vortex
at a distance x from the boundary is the one imposed by
a semi-infinite vortex lattice at a distance a0 + x, where
a0 = (Φ0/B)1/2 is the flux lattice spacing at the equilib-
rium.

The finite temperature is simulated in a way similar to
the one described in reference [9] by adding a stochastic
velocity to the particles:

vT =
(
2kBTτ/3∆2

)1/2 ( γx
γy

)
Θ(∆t/τ − q) (3)

where 1/τ is the average frequency for the thermal pertur-
bation, γx,y are random numbers from a Gaussian distri-
bution of width 1, q is a random number from a uniform
distribution between 0 and 1, and Θ is the Heaviside func-
tion. We have used a single set of parameters τ and ∆t
for all temperatures with τ � ∆t. The accuracy for the
temperature simulated in this way was checked by com-
puting the life time of a single vortex in a potential well
similar to the ones defined above. The life time as a func-
tion of the well depth was found to match accurately the
one given by the Arrhenius-Kramers relation for an over-
damped particle, in the range of temperature studied here.
In this overdamped regime, results are independent of the
viscosity when expressed in the time unit t/η, the escape
frequency being inversely proportional to η.

Finally, the displacement ∆ri of vortex i during time
step ∆t is computed according to the diffusive equation:

η ∆ri/∆t =∑
j 6=i

fvv(rij) +
∑
j

fp(rij) + fB0(xi/a0) + η vT (4)

where the first sum is over all vortices at a distance less
than 5λ and the second one is over all pins (η is the vis-
cosity per unit length). The time step is chosen so that
the vortex displacement during one step is always much
smaller than the pinning characteristic length, r0. At non

zero temperature, vortices tend to creep through the sam-
ple from the boundary submitted to the external field,
where vortices are fed whenever the magnetic pressure is
strong enough to allow for their penetration, to the one
with zero applied field. As a consequence, a steady ther-
mally activated flux flow is set after some time, charac-
terized by a linear flux density profile and a steady vortex
current density, F , that flows through the sample.

3 Results

In the rest, we use the following material parameters, ap-
propriate for a high temperature superconductor: λ =
1 400 Å, ξ = 18 Å, c0 = 35 Å and σ = 0.1. The sam-
ples held typically 5 000 pinning sites and 1 000 vortices
in the steady state. The matching field, BΦ = 5 000 G and
the external field, B0 = 2 500 G, were the same for all the
simulations.

In a way similar to what is done in the analysis of
real relaxation experiments, we use a one-dimensional
model with a single activation energy to analyze the vor-
tex current density [10]. According to this widely used
model, vortices thermally hop over barriers disposed along
a 1D axis with height U(j) (where j = (4π)−1∂B/∂x
is the current density) and the vortex current density
is F = jBφ0η

−1 exp(−U(j)/kBT ). This model clearly
misses some of the fundamental features of the real ex-
periments. As pointed in reference [10], it is valid only
in the case of almost uniform vortex and current densi-
ties, when physical quantities may be replaced by their
average over several vortex spacing. In particular, it as-
sumes that the screening current flows in our case along
straight lines perpendicular to the vortex flow. As can be
seen in Figure 3A, this is not so and the current tends
to flow along some curved, branched paths that reveal
the highly inhomogeneous stresses in the pinned flux lat-
tice. There has been attempts to account for the spatial
heterogeneity of the real systems, using a distribution of
activation energies [11,12]. However, the method assumes
parallel, independent relaxation channels, which is still a
very crude assumption. As for real magnetization exper-
iments analysis, we obtain the average screening current
density from the total magnetization of the sample. In or-
der to investigate different flux gradient profiles, different
sample geometries were used with the length of the cylin-
der between 20λ and 100λ and diameters between 10λ and
300λ. The experiments probed different T and j values,
which are located on a smooth (T , j) trajectory shown in
Figure 2. This is similar to relaxation rate measurements
in superconductors, for which both the temperature and
the screening current are varied – the latter parameter
being implicitly determined by the temperature and the
time window explored in these experiments.

The activation energy obtained from the simulations
is shown in Figure 2, where energy is normalized to the
single vortex pinning site energy, U0 = σε0r0/ξ, and crit-
ical current density to the single vortex critical current,
j0 = σε0/ξφ0. It is shown as a 3D plot, as the computa-
tion of the energy with one of these two parameters fixed
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Fig. 2. Top: (T, j) trajectory followed during the simulations.
Bottom: activation energy along the (T, j) trajectory. The dot-
ted line indicates the plastic barrier, Upl. Labels ‘B’ and ‘C’
refer to the samples in Figure 3.
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Fig. 3. Sample A: static ‘critical state’ at T = 0. Lines are
colinear to the local current direction and their length indicate
the current intensity (non linear scale). Samples B and C: same
notation as in Figure 2; lines are vortices trajectories in the
steady state.

would imply prohibitive computation time as tempera-
ture or current decreases. The same limitation is also en-
countered in real relaxation experiments, although in this
case the temperature variations are usually disregarded
and the data plotted as U(j). The reason for this is that
Maley’s procedure [13] allows to show that, in most cases,
the activation energy obtained from relaxation experi-
ments is temperature-independent. We notice, however,
that this is no longer true at low temperature, which has

been attributed to the occurrence of the quantum tunnel-
ing regime [14].

A clear upturn can be seen in Figure 2, where the ac-
tivation energy increases strongly with decreasing current
below j/j0 ' 0.05, kBT/∆ ' 0.25. This upturn corre-
sponds to the crossover between a plastic to a fluid flow
regime for flux motion. This can be seen, first, from a di-
rect observation of the vortices trajectories: in the plastic
regime, there exists a time scale at which some vortices
move over distances larger than a0, while others remain
immobile on that scale and constitute some kind of ‘pinned
islands’ (Ref. [2]). It is important to stress that these is-
lands depin at a larger time scale for non zero tempera-
ture, so that only a dynamical definition of these domains
may be given in our case. No such characteristic time may
be found in the fluid flow regime where, depending on the
time scale considered, nearly all or none of the vortices
move over this distance (Figs. 3A, B). A more quanti-
tative argument in favor of two clearly distinct regimes
is given by the examination of the diffusion of a vortex
trajectory, transverse to the average flux flow (Figs. 4
and 5). In the fluid flow regime, the transverse displace-
ment on the scale of the equilibrium flux lattice parameter,
δ = a−1

0 〈[y(0)−y(a0)]2〉1/2 where the average is performed
along the vortex trajectory, is significantly smaller than 1,
whereas it increases with decreasing temperature and in-
creasing current density up to a value ' 0.6−0.65 in the
plastic regime (Fig. 5). This limiting value may be under-
stood by considering that the most disordered trajectory
allowed in the flux lattice is the one where a vortex hops
randomly from one interstitial site to a neighbor site. A
consequence of disorder in the plastic regime is that the
examination of the flux pattern hardly reveals the orienta-
tion of the average flux flow (Fig. 3C, making abstraction
of the region close to the zero field boundary of the sam-
ple, where side effect is visible), as compared to the fluid
flow regime (Fig. 3B). As can be seen in Figure 5, the
increase of the transverse displacement along the (T, j)
trajectory shown in Figure 2 is rather abrupt, suggesting
that the trajectory might cross a transition line rather
than a crossover line. If this is so, an order parameter
may be elaborated from δ, after subtraction of the high
temperature baseline and adequate normalization, which
is unity in the ordered regime and tends towards zero in
the opposite limit, thus delimiting two distinct, nonequi-
librium, phases. The static topological orders of the two
phases which would be defined in this way do not show
significant differences: both lack long range order, either
crystal-like or smectic-like. To that respect, they both look
like a liquid, as demonstrated by the inspection of the den-
sity autocorrelation function (Fig. 6). It is difficult, how-
ever, to unambiguously put into evidence the existence
of a second-order nonequilibrium phase transition in our
case.

Up to now, we have reported only upon a single point
of the crossover line in the (T, j) plane. A close examina-
tion of Figure 3 provides some indication about the gen-
eral behavior of this line. Indeed, it can be seen that both
samples B and C do not exhibit a strictly homogeneous
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Fig. 4. Displacement transverse to the average velocity, along
vortices trajectories, y(x)(the average vortex flow is along the
x-axis).
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Fig. 5. The transverse displacement on the scale of the equi-
librium lattice parameter. Lines are guides to the eye.

regime and that the region close to their bottom bound-
ary tends to be in the fluid flow regime. This is because,
due to edge effects, the average screening current density
tends to be larger in this region. As a consequence, we
may now propose a schematic phase diagram for flux mo-
tion (Fig. 7), where we have added the disorder strength
as a third dimension. These observations are not easily
compared to the theoretical expectations for driven lat-
tices ([8] and refs therein). First, models investigate the
case of a weak random potential, which is not adequate
here, unless the matching field greatly exceeds the applied
magnetic field and σ � 1. Then, the two-dimensional,
non zero temperature case for the random potential is far
less documented than the three-dimensional one [8]. We
may simply notice that the measured activation energy
at the crossover is close to the plastic energy barrier (i.e.
the barrier experienced by a moving interstitial defect)
Upl ' ε0/2

√
3π ' 0.4 U0 (Fig. 2) [16] and that it is likely

that this condition holds all along the crossover line. In-
deed, energy barriers larger than Upl cannot be allowed
by decoupled vortex flow channels and larger barriers can
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Fig. 7. Schematic phase diagram. The arrow indicates the
trajectory followed in Figure 2, with indication of samples B
and C in Figures 2 and 3.

be sustained only by the coupling of these channels in
the fluid flow regime. Finally, we would like to compare
with real relaxation experiments. The main difficulty in
realizing the situation described by our simulations comes
from the presence, in real crystals, of naturally grown
point defects. Indeed, as-grown crystals invariably exhibit
at low temperature high critical current. In the highly
anisotropic Bi2212 material, screening current as large as
1010A m−2 is observed at low temperature. The introduc-
tion of strong pinning centers, such as columnar defects,
does however induce a sizeable increase of flux line pinning
at low temperature (almost one order of magnitude for
the critical current density at 4.2 K in Ref. [17], at a dose
Bφ = 20 kG). From this, it may be concluded that natural
defects are weak or dilute enough, so as to be overcome
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by the introduction of extra columnar defects, and that ir-
radiated crystals might provide a situation close to the one
described here. An expected signature for the crossover is
a weaker temperature dependence of the (relaxed) screen-
ing current in the fluid flow regime – as compared to the
plastic one – due to the increase of the energy barrier in
this regime. A sharp change is indeed observed in the tem-
perature dependence of the relaxed screening current, for
both as-grown and irradiated samples, although this has
been interpreted as the signature of the crossover between
small and large bundles regime in the first case, and de-
pinning from the defects in the second one [17]. We believe
that a decisive test should be the measurement of the en-
ergy barriers at this point and the comparison with the
one for the plastic mechanism.

4 Conclusion

We have studied the crossover between the fluid flow and
the plastic regimes of the critical state dynamics for a two
dimensional flux lattice, with strong pinning sites corre-
sponding to a matching field twice the applied field. Fol-
lowing a smooth trajectory in the (T, j) diagram, we find
that the transverse displacement of the vortex trajectory
rises abruptly as this trajectory crosses the crossover line.
There, the apparent activation energy for flux motion is
close to the plastic energy barrier and increases strongly
in the fluid flow regime. We point out strong similarities
between these results and the sharp crossover observed
in the temperature dependence of the screening current
density for as-grown and irradiated Bi2212.
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